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LIQUID CRYSTALS, 1993, VOL. 13, No. 5,645665 

Theory of NMR line broadening by elastic modes in 
nematic liquid crystals 

by J. B. FERREIRAt, H. GERARD, D. GALLAND and F. VOLINO*$ 
DRFMC/SESAM/PCM-CENG-85X-38041 Grenoble Cedex, France 

(Received 13 October 1992; accepted 12 January 1993) 

The model proposed in [7] to calculate the broadening effect produced by elastic 
modes on NMR line shapes of nematic liquid crystals, in which all modes with 
relaxation times longer than a NMR time scale AT are static, and infinitely fast in the 
opposite case, is put on a more rigorous theoretical basis, by considering all modes 
with their actual relaxation times. The correlation function of the transverse 
magnetization is calculated and expressed in terms of the self-correlation function of 
the components n, and ny of the local director, assumed to be equivalent and 
independent gaussian random variables. Formal expressions are given for the 
general case, and in the one constant, cylindrical and spherical cases, approxim- 
ations. The general procedure describing how to use this formalism for a NMR 
spectrum composed of many lines, is given. This formalism is then used to analyse 
the same data as in [7] concerning a main chain nematic polymer, in the spherical 
approximation. It is shown that fits with the same quality are obtained. These 
results provide (i) theoretical support for the model of [7], (ii) an operational way to 
define AT and (iii) a practical example for discussion of the controversial problem of 
the ‘cut-off wavevector(s)’ of the modes, which define the size of the elementary 
uniaxial object in the nematic medium. It is shown that, for this polymer, the 
smallest size corresponds to a volume between one and four repeat units. The 
analysis of line shapes provides the viscoelastic parameter q1”/K3/’, where q and K 
are the average viscosity and average elastic constant. Values of r ]  and K can be 
deduced from the theory. The limitations of the model are discussed. It is shown that 
the present model and the one of [7] are complementary. It is argued that the 
present formalism may be useful to analyse NMR line shapes in conventional 
polymers. 

1. Introduction 
The study of thermally induced long range orientational fluctuations (the elastic 

modes) [l, 21 in uniaxial liquid crystals is currently the subject of considerable interest. 
The main experimental techniques used for this purpose are light scattering [ 1,2] and 
nuclear spin-lattice relaxation [3-61. While the theory to analyse light scattering data is 
well established and widely accepted, essentially because this very technique can select 
a particular wavelength which is always much larger than a molecular length, the 
situation is more confusing for spin-relaxation because all modes, in particular those 
with short wavelengths, need to be taken into account. In a recent paper [6 (a)], Faber 
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646 J. B. Ferreira et al. 

discusses a number of important questions on this matter, in particular the central open 
question about what are the shortest (cut-off) wavelengths (whose actual values are of 
fundamental importance in the theory) below which the continuous theory breaks 
down. His conclusion is that “the director field can be defined at any arbitrary length 
scale” and consequently, that it is justified to assume that “all the misalignment of 
molecules in a nematic can be described in terms of director fluctuations, even on a 
microscopic scale” [6 (a)]. 

Although this viewpoint is not widely accepted, the very existence of the elastic 
modes is not questioned, and methods that are sensitive to them can be used to study 
viscoelastic properties, test the theory and/or estimate the contribution of other 
mechanisms to the measured quantity. Besides those already mentioned, another 
possible method is the study of NMR (and ESR) line shapes. A reason why this method 
is not widely used is that the overwhelming number of NMR studies have concerned 
low molecular mass liquid crystals, in which the effect of these modes on the NMR line 
shapes is negligible [4]. In other words, practically all modes are fast compared to the 
relevant magnetic interactions. In polymer liquid crystals on the contrary, due to the 
increase in the viscosities by several orders of magnitude, an appreciable fraction of the 
elastic modes are slow, producing some ‘static’ broadening of the lines. 

In a previous paper [7], the calculation of the corresponding effect was made by 
introducing a NMR time scale AT and assuming that all modes whose relaxation time is 
larger than AT are completely static, and infinitely fast in the opposite case. This 
assumption naturally led to the introduction of the notion of ‘static order parameter’ 
S,,,,, which could be expressed in terms of an average viscosity q, an average elastic 
constant K ,  the NMR time AT and the temperature 7: This parameter quantifies the 
amount of orientational disorder introduced by the ‘static’ modes. This model accounts 
very well for the experimental variation of the proton NMR line shape of a main chain 
nematic polymer monodomain with the angle between the axis of the monodomain and 
the static magnetic field [7]. It also proved to be very useful to analyse the time 
evolution of line shapes during magnetic reorientation of monodomains, from which 
accurate values of viscoelastic coefficients could be deduced for a main chain [8] and a 
side chain [9] nematic polymer. 

This model applies only to cases where the static disorder is small (S,,,, k0.9), its 
main approximation lying in the partition of the modes into (completely) static and 
(infinitely) fast ones. Moreover, the quantity S,,,, which is deduced from the 
experiments is not an intrinsic property of the phase, since it depends on the NMR time 
scale AT. Since in addition AT is a priori ill-defined for broad proton NMR spectra 
(although this limitation is not too serious, since the dependence on this parameter is 
only to the power 1/2), it would be very interesting to remove this approximation and 
consider all the modes in the calculation of the line shape. The main purpose of this 
paper is to present such calculations. 

In $2, the general theory is presented and close mathematical forms for the 
correlation function of the transverse magnetization are given, corresponding to the 
cylindrical and spherical one constant approximations. In $3,  we describe an 
application of this theory to the analysis of proton NMR line shapes of a main chain 
nematic polymer, and in $ 4  these results are compared to those obtained with the 
approximate method of [7]. In 5 5, the question of length scale and cut-off wavevectors 
is discussed in the light of the results obtained with this particular polymer. In the 
conclusion, the approximations of the model are discussed and the possibility of 
application of the method to conventional polymers is outlined. 
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N M R  line broadening by elastic modes 647 

2. Theory 
2.1. General formalism for the case when the static magneticjield is parallel to the 

mean director 
We consider an idealized ‘basic molecule’ constituted by a segment picturing its 

(cylindrical) symmetry axis, and oriented at an angle 8 with respect to the static 
magnetic field. For simplicity, its NMR spectrum is assumed to be a single sharp linej 
at a distance w j  = ojoP2(c0s 8) from the Larmor pulsation wo. This distance is a 
maximum (=mi,) when the molecule is aligned along the field. If the angle 8 fluctuates, 
the line shape will change according to the time scale and the magnitude of the 
fluctuations. In the adiabatic approximation, i.e. when the fluctuations are fast 
compared to the spin-lattice relaxation time, the line shape IJ(w) of an ensemble of such 
magnetically uncoupled molecules is given by the Fourier transform of the function 
G,@) ClOl 

GAt) = Re (exp (iwot - t/TJ<exp CiF,(t)l>}, (1) 
where 

r i  rt 
FAt) = J . w,(t’) dt’ = wjo P,[cos 8(t’)] dt‘ 

0 J o  
1/T’ is a damping coefficient which ensures that G(t) always tends to 0 at infinite time, or 
equivalently, that the NMR line has a non-zero width (equal to 2/T,) in the absence of 
fluctuations. The brackets stand for an equilibrium statistical average. 

The calculation consists of evaluating the above quantities, assuming that the time 
fluctuations of 0 are due to the elastic modes. We will adopt the viewpoint discussed in 
the Introduction, and identify the local director n of the continuous theory with the 
long axis of our idealized molecule. 

In the hydrodynamic theory, a statistical order parameter S at time t’ is defined as 

S =  1 -- [ni(r, t’) + t$r, t’)] , (3) c ) 
where n, and ny are the components of the local director in the laboratory frame, z being 
along the mean director no (i.e. the axis of the monodomain) and where, here, the 
brackets stand for a space average at time t‘. Invoking the ergodicity theorem (valid in a 
sufficiently fluid medium), it can also be thought of as a time average performed.at a 
particular point r, where our idealized molecule is situated. Thus, n, and ny are the 
components, in the laboratory frame, of the unit vector along the molecular axis. 
Consequently, P2[c0s 8(t’)] in equation (2) is just the value at time t’ of the quantity 
inside the brackets in equation (3). In the following, the explicit dependence on r will be 
omitted for simplicity, in all formulae. 

Defining the real random functions 

{(t’)  = n:(t’) + ny2(t’) - (n:(t’) + ny2(t’)> (4) 

and 

x j  ( t )  = - - wjo t(t‘) dt’, 
2 0  3 s ’  

we can write 

(6) 
3 
2 oj ( t ’ )=Sojo- -wjog( t ’ )  
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and 

J. B. Ferreira et al. 

G j  (t) = Re {ex p [ i(o, + Sojo)t - (7) 

2.2. Statistical behaviour Xj(t) 
Later, it will be assumed that n,(t’) and n,(t’) are gaussian random functions with the 

same distribution, and it follows that nf + n; is a random function of the x2 type with 
two degrees of freedom. But whatever reasonable hypothesis is made about the 
probability distributions of n, and n,, or <, X,@) defined by equation (5 )  may always be 
considered as a gaussian random function. The reason is that an integral of a random 
function behaves just like the sum of random variables, and the gaussian character 
follows from the central limit theorem. This argument is probably weak when t is small 
or comparable to the correlation time of [, but in this case XAt) is always small, and the 
type of distribution taken for this variable is not likely to affect much the average 
present in equation (7). 

With this gaussian hypothesis for Xi, we have 

where 

Noting that ( X i >  =O (this property follows immediately from equations (4) and (5) )  we 
readily obtain 

(10) (exp CiXAtll) = exp c - (X,Z(t)>PI. 
Assuming that &‘)is a stationary random function, which is actually the case whenever 
S does not depend on time, it can be shown after some mathematical manipulation that 
we have 

(X;(t)) =;o,Zo dz(t-r)C&z) (1 1) 1: 
where C&) is the self-correlation function of < 

C&) = <t(t‘)t(t’ - 4). (12) 

2.3. An expression for C&) 
From equation (4), it follows that 

C,(Z) = ([n:( t’) + n,’(t’) - (n,’ + a,’)] [n:(t’ - 7) + n,’(t’ - T) - (n,” + n,’ )] ), (1 3) 
where we have used the property that (8: + n,”) does not depend on t‘ and z. Using the 
fact that n, and n, are equivalent random variables (same statistical properties), we 
obtain 

(14) C,(z)=2(nf(t’)n:(t’-z)) +2(n:(t’)n;(t’-t)) - (nx” + n,’)’. 
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NMR line broadening by  elastic modes 649 

To go further with the calculation, we shall follow [S] and assume that (i) the 
fluctuations in x and yare uncorrelated and (ii) n, and n,, are gaussian random variables 
with the same distribution. The first assumption makes it possible to write 

(n,”(t’)n;(t’ - r ) )  = (n:(t’))( n,’(t’ - 7)) 

and the second assumption leads to 

(n;(t‘)n,”(t’ - 7)) = (n:(t’)) (n,”(t’ - z)) + 2( nx(t’)n,(t‘ - r ) )  

Inserting these two relations into equation (14), we arrive at the following simple result: 

C&) = 4(n,(t’)nx(t’ - T ) ) ~ .  (15) 

2.4. Formalism for the case when the static magneticfield is at an angle 0 to  the 
mean director 

The laboratory frame is chosen such that the z axis is along no, as before, and the 
static field His in the xz plane. In this frame, the polar and azimuthal angles of the field 
and of the molecular axis n are 0, 0, and 0, cp, respectively. The relevant formulae are 
still as in equations (1) and (2), but now 8 = (n, H) becomes a function of 0. We have 

(16) P,(COS e) =gn:  sin2 0 + n2 cos2 0 + 2nxn, sin 0 cos 0) -+ 

(P,(COS e)) = SP,(COS 0). 

and taking (n:) = (n,” + n;)/2, (n,n,,) =O, it follows that 

(17) 

Writing o l t ’ ) =  (colt’))+ Colt’)-  (w,(t’))], and using equation (17), we arrive at 

colt’)= swjoP2(cos O)-&Djo<e(t‘), (18) 

where 

te(t’) = $SP,(cos 0) - (n: sin2 0 + n2 cos2 0 + 2n,n, sin 0 cos 0) +$ (19) 

is a random function which generalizes ((t’), given by equation (4), to the case where 
0 # 0, i.e. to(“’) = t(t’), and also satisfies ( (e ( t ’ ) )  = 0. 

Similarly, defining the random variable 
rt 

the lineshape le,JU) in the presence of fluctuations, when the director is rotated at an 
angle 0 with respect to the field, is given by the Fourier transform of Ge,  At) 

i(wo + Soj,P2(cos 0 ) ) t  -- (exp [iXe, ,@)I)  
T2 “I 

Invoking the same arguments as for XXt), we shall assume that X e , i t )  is a gaussian 
variable, and we can write a set of equations similar to equation (8) through equation 
(12), the only difference being that X l t ) ,  C,(r) and t( t‘)  are now replaced by X , d t ) ,  
C,,(z) and te(t’)- 
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650 J. B. Ferreira et al. 

The calculation of the self-correlation function C&) is made in three steps. First, 
using equation (19), and all statistical properties of n, and n,, previously assumed to 
hold, we obtain 

(t,(t’)te(t’-z))=(4- 12sin2 O+  10sin4 @)(n,(t’)n,(t’-z))2 

+4 sin2 O cos’ O(n,(t’)n,(t’)n,(t’ -z)n,(t‘- 7 ) )  

+4sin3 Ocos O(n2(t’)n,(t’-z)n,(tr-z)) 

+ 4 s i n O ~ o s ~  O(nZ(t’)n,(t’-z)n,(t’-7)). (22) 

This equation is exact, but unuseful because most of its bracket expressions are not 
expressable in terms of model parameters such as S or the viscoelastic parameters 
referred to below. To proceed, we assume that the fluctuations are small (n: and n,” 4 1); 
then we can replace n, by 1 -8n: +n;). Noting that (n:(t’)) = (nf(t‘)n:(t’-r)) 
= (n:(t’)n,(t’ - T)) = 0, and neglecting terms of the third order in n:, we can write 

(Se(t’)te(t’-z)) = 4(n,(t’)n,(t’- 4)’ 

(23) 

1 s + 5  
3 

- 2--(n3tr)nx(tr - 7)) - IO(n,(t’ --z))’ 

-2sin2 @(n,(tr)n,(t’-t))2. 

In the Appendix, we show that the gaussian hypothesis for n,(t’) leads to the relation 

(n:(t‘)n,(t‘- z)) = 3(n:)(nx(t’)nx(t‘ - z)> (24) 

so we find 

( S  + 5x7s - 1) 
9 

(sin2 0 - sin4 O)(n,(t’)n,(t‘- z)) (te(t’)te(t’- 2)) = 

+[4-2sin20- 10(sin2 @-~in~O)](n,(t’)n,(t’-z))~. (25) 

For 0 = 0, we recover all equations of the previous sections. 
It is interesting to note that, in the general case, the correlation function oft, is the 

sum of two terms, the first one being proportional to the correlation function of n,  and 
the second one to its square. For 0 = 0 and 90” on the contrary, only the square term 
survives. Because this latter function is basically a quantity (much) smaller than 1, and 
the coefficients of proportionality are usually comparable when 0 is around 45” 
(otherwise the coefficient of the square term largely dominates), we conclude that the 
effects of the elastic modes on NMR line shapes are stronger when the director of the 
nematic monodomain makes a large angle (say, 40 to 60”) with the static field. This 
result constitutes the theoretical support for the qualitative arguments invoked in [7] 
to justify the corresponding experimental results. The only thing that is now needed to 
perform a practical calculation is a formal expression for the self-correlation function of 
n, in terms of the parameters of the hydrodynamic theory. 
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N M R  line broadening by elastic modes 651 

2.5. Calculation of (n,(t’)n,(t’ - 7)) 

In the hydrodynamic theory of nematics [1,2], we introduce the space Fourier 
transform of Itx, limited to the volume Vof the nematic monodomain 

Using the normal splay-bend (a = 1) and twist-bend (a = 2)  modes na(q, t), the 
correlation function of n, can be expressed as 

showing that the two kinds of modes contribute additively to this function. Neglecting 
the diamagnetic contribution to the free energy (see below), the (Ina(q, 0)l2) and the za(q) 
can be written [2] 

where 

In these expressions, the symbols have their usual meanings. The K i  are the Frank 
elastic constants, the ui are the Leslie viscosity coefficients and the qi are the Miesowicz 
viscosity coefficients. The quantities qL and q, are the components of q perpendicular 
and parallel to the director z, and p = qJqr 

Introducing the two functions 

and 

Fa(P) = f , ( P ) / r t a ( P )  

equation (27) can be rewritten 

(31) 

This equation gives the most general expression for the correlation function of n,. The 
value of this function for T = O  is 

(n:(o)> = k ~ T / 2 E e ,  (33 a) 
where Ee is a quantity, with the dimension of an energy, given by 

This energy may be thought of as an elementary elastic energy associated with the 
modes, and stored in the nematic phase. It must be sufficiently large compared to the 
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652 J. B. Ferreira et al. 

'quantum' of thermal energy kBT/2 so that a nematic phase exists at temperature 'I: The 
energy E,  is related to the order parameter S via the evident relation 

So far, nothing has been assumed concerning the molecules, except that they are 
necessarily objects with cylindrical symmetry. If we assume that the nematic domain 
contains N such objects, a condition concerning the integration volume in q space can 
be written. This condition is that the number of modes in this monodomain is equal to 
the total number of orientational degrees of freedom associated with the (linear) 
molecules, namely 2N [6]. Noting that the density in q space, of modes of polarization a 
(a= 1,2), in a sample of volume r! is V/8n3, the above condition writes 

V 
(35) 

Introducing the number of molecules per unit volume n,, the density p, the 'molecular 
mass' M (the quotes emphasize the fact that the idealized molecules are not necessarily 
the true molecules) and the Avogadro number N,, this condition can be rewritten 

P = 16n3Na- for a pure sample 
a= 1 M 

The integration volume in q space has necessarily cylindrical symmetry around the 
mean director. The lower limit corresponds to the inverse of the sample dimensions. It 
can be taken as zero for a macroscopic sample, in normal magnetic fields, provided the 
upper limit is sufficiently high (of the order of the inverse of the molecular dimensions}, 
as is actually the case. The reason is that the contribution to the integrals in equation 
(27), of all modes whose wavelengths are longer than the magnetic coherence length (a 
few microns in our magnetic field), turns out to be completely negligible. This result also 
justifies that the diamagnetic term in the free energy can be neglected, as previously 
assumed. The upper limit of the integration volume is more interesting. It cannot 
extend to infinity in all directions since equation (36) imposes that this volume be finite. 
The upper limit of the integration volume thus defines two cut-off wavevectors for 
each orientation 0 of q with respect to the mean director. 

To proceed with the calculation, some volume shape should be assumed. We choose 
the simplest shapes, namely circular cylinders. In this case, there are, in all, four cut-off 
parameters, q ta  and 41.. The volume element in q space being dq = 2nq,dq, d4z, 
equation (32) can be rewritten: 

The integral in q1 being performed at constant qZ, we have dq, = qz dp. Noting that the 
integrand is an even function of q2, the change of variables (ql, 4&4p = q,/q2, v = 4 3  
leads to 
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N M R  line broadening by elastic modes 

where the J,(z) are double integrals defined as 

The upper limit of the second integral is given by: 

and 

Introducing the error function erf, which verifies the identity 

g,(P) = 4:a 

ga(P) = 4 U P  

for P G 4 u &  

for P ’ 4f./4:a’ 

d I 2  erf(AB1IZ) f f : exp( -Bu2) du =- 2 A B ” ~  ’ 

653 

we get 

It can be easily seen that both integrals converge for all z values, but their evaluation 
can be made only numerically. However, for z = 0, a close form exists. One way to 
perform the calculation is to put z = O  in equation (32) and follow the procedure used in 
[7]. The final result, expressed in terms of the elementary elastic energy E, of equation 
(33), is 

1 1 2 ” l  
E,  2nzU=1 K ,  2 - = - c 5 [ - log (1 + mu) + mi/2 arctan ($)I, 

where 

(43 a) 

It is worth noting that, from the purely computational point of view, the model 
implies eleven parameters, namely the five independent viscosity coefficients, the three 
elastic constants, and the four cut-off wavevectors related by equation (36). This is 
certainly too much in most practical cases, where little is known about the viscoelastic 
constants. Moreover, the numerical evaluation of the J ,  for finite values of z is rather 
difficult. Some further simplification should thus be made. 

2.5.1. The cylindrical, one constant approximation 
The next simplification that can be made corresponds to the one constant 

approximation, in which only one viscosity (q) and one elastic constant (K) are 
considered, and no distinction between the splay-bend and twist-bend modes is made, 
so that the index a becomes irrelevant. Defining perpendicular and parallel ‘cut-off 
relaxation times’ TI and 7: as 
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654 J. B. Ferreira et al. 

we obtain, after a rather lengthy algebraical manipulation, the following final (exact in 
this approximation) result: 

. (45) 
1 - exp (- u) erf [(qz/q;)u'/'] 

U (4;/45)u"2 

This integral is easily evaluated numerically for any set of values of the two viscoelastic 
parameters and the two cut-off wavevectors. In this approximation, equations (43) and 
(36) become 

and 

for a pure sample 

In this cylindrical approximation, the number of parameters is reduced from eleven to 
three. It is possible to simplify the problem slightly further with the spherical 
approximation. 

2.5.2. The spherical, one constant approximation 
This is the usual approximation that is found in the literature [4-61. No distinction 

is now made between modes propagating parallel and perpendicular to the director. 
The integral in equation (36) is calculated in a sphere whose radius is the modulus qc of 
the single cut-off wavevector. The result of this calculation is well known [ 5 ]  

The single cut-off relaxation time z, is given by 

and equations (43 a) and (36) become 

and 

(49 b) P for a pure sample 

The two free parameters of the model, to be determined by comparison with 
experiment, are the cut-off relaxation time z, and the order parameter S.  In terms of 
these parameters, equations (47) and (34) can be rewritten 

and 
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N M R  line broadening by elastic modes 655 

These two equations are the central ones for practical use in the framework of the 
spherical approximation. They will be used below to analyse proton NMR line shapes 
of a nematic polymer. But, before, we shall summarize the procedure to be followed to 
perform the complete calculation for an aligned NMR spectrum (basic spectrum) 
constituted by a single line, and then for a more realistic basic spectrum composed of 
many lines. 

2.6. The calculation procedure 
In short, the calculation of the NMR line shape in the presence of elastic modes, 

when the director is rotated at an angle 0 to the static field, for a basic spectrum 
composed of a single line at ojo, can be made in six or seven steps: 

choose an expression for the correlation function of ndt’), namely either 
equation (32) (general case), or (45) (cylindrical, one constant approximation), 
of (47) (spherical, one constant approximation); 
select numerical values for the parameters of the model and the angle 0; 
calculate the correlation function of n, for all z values between 0 and about 

insert these values into equation (25) to calculate the correlation function of 

use equation (11) to calculate (X i , , ( t ) ) ,  and equation (10) to calculate 

use equation (7) to calculate G , j ( t ) ,  and perform the time Fourier transform. 
Possibly, if the sample is a polydomain, with a distribution function F ( 0 ,  @) 
for the mean directors, the relaxation function [G,(t)],, to be Fourier 
transformed is 

5 T,; 

e,; 
(exp L-iX,,,(t)l); 

r 

The isotropic ‘powder’ corresponds to F ( 0 ,  0) =&IT. 

2.7. Generalization to complex spectra of real molecules 
So far, our molecules are idealized objects with cylindrical symmetry which are 

reduced to their long axis. Real systems are composed of real molecules which generally 
have no symmetry at all, and their NMR spectra are composed of many lines. A central 
question to be discussed is which object should be identified with the idealized molecule 
of the theory. Whatever this object is, we shall suppose that the perfectly aligned (basic) 
spectrum of the idealized molecule is the same as that of the real molecule (this 
assumption will be discussed below). 

To know this spectrum, it is generally necessary to conduct experiments using 
anisotropic fluid phases in order to determine the structure, conformation and order 
tensor. The principal axes OXYZ of this tensor are the most reasonable choice for the 
molecular axes. For molecules as large as those of usual low molecular mass nematics, it 
is expected that these axes do not change much with temperature and with the medium 
in which they are embedded, so that they can reasonably be considered as rigidly 
attached to the molecule. If such experimental results are not available, then the 
directions of these axes, the structure and conformation should be guessed. 

Two possibilities arise, depending on whether the order tensor is uniaxial or biaxial. 
If it is uniaxial, the basic spectrum of the idealized molecule can be identified with that 
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656 J. B. Ferreira et al. 

of the real molecule, calculated with OZ along the field, using magnetic interactions 
that are averaged over internal motions only. These averages are perfectly defined in 
the framework of the single conformation model [12,13]. 

If the tensor is (suspected to be) biaxial, we may proceed as follows. The overall 
motion described by the order tensor is split into a fluctuation (described by angle x )  of 
principal axes OX and O Z  in their own plane (X and Ydefined such as S,, - S,, >O), 
and a uniaxial motion of the frame defined by O X ,  0 Y and OZ', where OX', 0 Y and 
OZ' are the average orientations of OX, OY and 02 over the fluctuations x. The 
magnitude of this fluctuation is related to the anisotropy of the orientational order 
rls = ( S X X  - SY YYSZZ by 

The uniaxial order parameter to be associated with the long axis OZ' is related to the 
principal values of the order tensor by 

s=S,z/[PAco~ x ) l a v = S ~ ~  +SXX-SY Y(= - 2 s ~  Y). (54) 

For uniaxial order, we recover x = 0 and S = Sz. 
The basic spectrum I ( o )  to be considered is now the one calculated with O Z  along 

the field, using the magnetic interactions that are partially averaged by the internal 
motions, as in the uniaxial case, but also by the fluctuations x. This procedure, which 
applies under the assumption that the fluctuations x are fast but not too large 
(I& <n/4), and uncorrelated with the fluctuations described by the elastic modes, has 
been briefly justified in two previous papers Cl2, 131. The paper presenting the detailed 
calculations is in preparation. 

It is also worth mentioning that the real molecules may (but not necessarily) be 
identified with the idealized molecules if their orientational order can be considered as 
uniaxial. However, strictly speaking, they can definitely not, if the order is biaxial. Since 
there is increasing evidence that the molecular order is generally biaxial in real systems, 
this means that the idealized molecules of the theory should necessarily be identified 
with entities larger than one molecule. 

Let Z(w) be the basic NMR spectrum of one molecule, calculated with the field along 
OZ', according to the above prescription. This spectrum is composed of L lines j of 
intensities Z j  and distances ojo from the Larmor pulsation coo. We can write 

L 

j =  1 
I ( 0 )  = c I jS(Wj0  - wo). (55) 

The rotation around 02 is uniform by definition. If it can be considered fast enough on 
the NMR time scale, all the averaged (by the internal motions and the uniform rotation) 
magnetic interactions are scaled by the factor P,(cosO). The rotated spectra have 
exactly the same shape as the aligned spectrum, but are narrower by this factor. In this 
case (and, strictly speaking, only in this case), each linej keeps its identity when the 
angle is changed, and can thus be considered as independent of all the other lines. 

Now, if the molecule is embedded in a nematic phase, it is evident that, because of 
this independence, the lineshape le(o) in the presence of elastic modes is the time 
Fourier transform of Ge(t) given by 
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N M R  line broadening by elastic modes 657 

where G,&) is the relaxation function associated with line j of the theoretical spectrum, 
given by equation (21). 

In all this discussion, it is assumed that the fluctuations x and the rotation around 
OZ' are fast compared to the largest magnetic interactions. If they are not, equation (56) 
does not apply, although it may be a reasonable approximation if the amplitude of x is 
small and the order sufficiently large. 

3. Application to a nematic polymer 
The theory is now applied to the analysis of the proton NMR line shape of a main 

chain nematic polymer of the type (RF),, where R is a mesogenic unit and F a flexible 
spacer, labelled AZA9d14, whose chemical formula is 

0 

This sample is the same as the one used in previous work [7,8], in particular, the work 
in which the concept of 'static order parameter' was introduced [7]. Here, we repeat the 
analysis of the same data, namely the angular (0) dependence of the proton spectrum of 
a monodomain of this polymer, at 393 K, using the present theory. For this analysis, we 
use the spherical, one constant approximation, which will prove to be sufficient for our 
purpose. 

According to $2.7, we need as a starting point the theoretical proton NMR 
spectrum of the idealized basic molecule, with the long axis along the field (basic 
spectrum). For polymer AZA9d14 (deuteriated on the spacer), we assume that this 
spectrum is the same as that of its azoxybenzene moiety. The exact simulation of the 
corresponding twelve spin 1/2 spectrum has been the subject of previous work, recently 
published [14], in which the structure and conformation of the azoxybenzene moiety, 
and the direction of the principal axis OZ and associated principal value Szz of the 
order tensor, were determined. Although there is some independent evidence that the 
order is biaxial [l5], no significant information about the biaxiality can be extracted 
from this simulation alone, because the effect of introducing a finite value of qs can be 
very easily compensated by slightly changing the geometrical parameters [ 14). 

However, because the existence of biaxiality also changes the width of the aligned 
(S = 1) spectrum, two basic spectra will be considered, one for qs = 0, and one (almost 
identical, but narrower, since some dipolar interactions have been reduced by the x 
fluctuations) for qs=0-272 (corresponding to ( x ( , , ~  = 22-17'), which is probably closer to 
the actual situation, as shown by a recent, more detailed, analysis (performed in our 
laboratory) of the whole set of existing data concerning this polymer. These two basic 
spectra are reproduced in figures 1 (A) and (B). 

The order parameter S,, of AZA9d14 is known over the whole nematic range 
[7,14]. At 393K, its value is ~ 0 . 5 4 .  The values of the uniaxial parameter S of the 
theory, given by equation (54), are S = 0.54 with basic spectrum 1 (A) and S = 0.69 with 
basic spectrum 1(B). In the spherical, one constant approximation, the single 
remaining parameter to be determined from the analysis is the cut-off relaxation 
time z,. 

We have performed the calculation as prescribed in 0 2.6 for the same values of the 
angles as in [7], using a UNIX computer. The enormous number of lines of the 
theoretical spectra have been gathered into 800 packets of width Amjo around ojo. The 
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A 

B 

, 10 kHz, 
Figure 1. Basic proton NMR spectra of AZA9d14 polymer used in the analysis. (A) calculated 

for no biaxiality (qs =O): this spectrum is identical to spectrum 1 (b) of [14]; (B) calculated 
with q,=O.272 this spectrum is narrower than (A) by the factor (1 +qS)-’;  (C) calculated 
for a large basic molecule such that S = 0.962 this spectrum is narrower than (A) by a factor 
054/0.962; (D) reference spectrum used in the approximate method of [7]: this is the 
experimental aligned (O=oO) spectrum at T = 120°C for the nematic phase. 

intensity l j  associated with packet j is the sum of the corresponding intensities of the 
individual lines inside this packet, and this packet is identified with line j of the 
spectrum used in the computation. 

The results of the simulation, with T2 =025 x lop2 s, are shown in figures 
2 (A) and (B) for the two basic spectra. Comparison with the experimental spectra (see 
figure 2(E)) shows that good fits, of nearly equal qualities, are obtained in both cases. 
For the case qs =0, the best fit is obtained for z, = (0.43 & 0.15) x s. The simulation 
is rather sensitive in the sense that values of zc outside the range mentioned can be 
excluded. The situation is slightly different for the case qs = 0.272, where the uncertainty 
range is broader, although the central value is certainly larger than for the case qs =O. 
Figure 2 (B) corresponds to the simulation with z, = 0.95 x low6 s. 

Introducing in equation (51) the values of S and z, for the case qs = 0 yields q 1 / 2 / K 3 / 2  
=(1-13f0-21)x 109kP1/2dyne-3/2 (1 kP=102 Pas; ldyne=lO-’N). Exactly the 
same value is obtained for the case qs =0*272. This quantity is the only information on 
the viscoelastic parameters that can be extracted from the simulation of the line shapes. 

It is possible to go further and find the actual values of q and K, using equation 
(49 b). Consider the case qs = 0. The smallest uniaxial object is then the repeat unit (the 
object attached to the OXYZ frame of $2.7). The corresponding molecular mass is 
426 g. With p = 1 g ~ m - ~ ,  equation (49 b) yields qc =4.37 x lo7 cm-’. Combining 
equations (34) and (49 a), we obtain K = 0.78 x dyne, and from the above value of 
q1/’/K3/’, we deduce q = (0.61 & 0.22) kP. 
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N M R  line broadening by elastic modes 659 

a b C d e f 
Figure 2. 90MHz proton NMR spectra of a nematic monodomain of AZA9d14 polymer, at 

393 K, for different angles 0 between the mean director and the static magnetic field (a) O", 
(b) 25.5"; (c) 37"; (d) 47"; (e) 76.5"; cf) 90". Spectra (A), (B) and (C) are calculated in the 
spherical, one constant approximation: (A) using basic spectrum 1 (A), S=0.54 and 
z, =0.43 x 10e6s (case uniaxial); (B) using basic spectrum 1 (B), S=O.69 and z,=O.95 
x 10-6s (case biaxial); (C) using basic spectrum 1 (C), S=O-962 and ~ , = 0 - 6 4  x 10-4s 

(large basic molecule). Spectra (D) are calculated with the approximate method of [7], 
using reference spectrum 1 (D) and S,,,,=O962 (reproduced from [7]). Spectra (E) are 
experimental, obtained at T =  120°C for the nematic phase (reproduced from [7]). 
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It is instructive to compare these values with the results from magnetic reorient- 
ation measurements 181. Concerning the elastic constants, it has been found [S] that 
K1 % 1 x dyne and that 0-3 GK3IKlG0.5.  Nothing is known about K,. If we 
assume that the value of the latter is comparable to that of the two other constants, it is 
seen that the value obtained for K may be considered as a reasonable average value. 
The agreement is better (more accurate) for the viscosities, which can be classified into 
small and large [83, differing by about two orders of magnitude. The small ones are 
qbend, qb and probably q,, and the large ones areq,wist (= yl), q,pl,y and qc. The viscosities 
with indices bend, twist and splay are given by equations (29). They correspond to those 
of the three fundamental modes, and are equal to q,(O) (=q2(0)), q2(co) and ql(oo), 
respectively. For the present purpose, it is natural to focus on the viscosities of the three 
fundamental modes, whose values are (in kP) [S]: qbend = 0.17 & 0.02, qSplay = 11 &- 5, and 
qtwist = 15.7. The harmonic average (average of the inverses) of these three viscosities is 
qharm = (0.50 f 0.07) kP. It is remarkable that qbarm and q, which have been obtained 
independently from one another, are found to be equal within experimental accuracy. 
In a situation in which the three elastic constants are of the same order of magnitude, 
the harmonic average of the three fundamental viscosities is proportional to the 
(arithmetic) average of the relaxation rates of the three fundamental modes. And it is 
clearly this average rate which is the most reasonable candidate to be identified with the 
single average rate of a one constant approximation model. 

The fact that the simplest possible version of the model (one constant, spherical), 
with one free parameter only (7c), allows us to describe satisfactorily the experimental 
results, and that the values deduced for the viscoelastic parameters are in complete 
agreement with what is expected, suggests that the physics introduced in the theory (the 
elastic modes) is probably correct. However, the analysis is heavy and the amount of 
information about the viscoelastic properties extracted from the analysis of the line 
shapes (the value of q1/2/K3/2), is rather weak. From this point of view, it may be asked if 
the simpler method of 171, when applicable, does not give in fact the same amount of 
information. This is what is explored in the next section. 

4. Comparison with the approximate method of [7] 
As stated in the Introduction, the approximatemethod described in [7] introduces 

a NMR time scale AT which is not only a function of the system under study, but also of 
its NMR features. In this description, the disorder associated with the slow modes is 
characterized by a ‘static order parameter’ S,,,, given by the same expression (51), but 
with T, replaced by AT (71. 

An important question in this method is how to define accurately AT when dealing 
with broad (proton) NMR spectra, such as that of our polymer. All that could a priori 
be said is that “A7 is of the order of the inverse of the spectral width” 171. This statement 
can now be made much more accurate using the above results. Combining the two 
expressions for S and S,,,,, we obtain 

With the above values of S and 7, associated with either q s = O  or 0.272, and 
s 

It is interesting to relate AT to the full extension Avfef of the reference spectrum of 

S,,,, =0.962 [7], we obtain AT = (0.63 k0.22) x 
guessed in [7]. 

figure 1 @). This spectrum extends over - 15 kHz, corresponding to ( A q &  

s, which is about the value 
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=(2nAvref)-' N 1-1 x 10-5s-0.17Az. This result means that, for broad NMR lines 
such as those of the AZA9d14 polymer, the value of AT to be chosen, in an analysis in 
terms of static order parameter, is about 6 (Aoref)- '. Thus, with this prescription for the 
choice of AT, the approximate method of [7], when applicable, yields the same 
viscoelastic information as the more rigorous method presented here. This fact justifies 
a posteriori its use in the analysis of line shapes in magnetic reorientation experiments 
~ 8 ~ 9 1 .  

5. The problems of the c u t 4  wavevector and of the nature of the basic molecule 
In this section, we use the above results to discuss the questions of the value of the 

cut-off wavevector and the nature of the basic molecule in the AZA9d14 polymer, in 
order to see if it is possible to shed new light on this controversial [6a] matter. 

In a matter like this, the most important point is to separate properly the quantities 
introduced in the model into quantities with direct physical meaning, that is, which are 
directly accessible to experiment, and those which are only convenient concepts 
introduced in the theory. The order tensor of the mesogenic unit (which can be 
measured directly from simulation of the NMR spectrum, if the structure and 
conformation are known), the viscosities and elastic constants (which both can, in 
principle, be measured directly by well-established methods, independent of NMR), 
and the density belong to the first class. The cut-off wavevector(s), the cut-off 
correlation time@) z,, the uniaxial order parameter S, the basic molecule and its 
associated theoretical NMR spectrum, on the contrary, belong to the second class. 
These latter parameters can a priori have any values, the only restrictions being that 
calculation of the measurable quantities in terms of them should always yield the same 
results. The restrictions on S, T,, qc and n, (or M) can be written in the form 

q2n; ' = 671' (or q2M = 6n2pN, for a pure system). (60) 
These equations show that the choice of the cut-off (and thus of the associated basic 

molecule) is almost completely arbitrary. The smallest possible basic molecule 
corresponds to the smallest entity in the nematic monodomain which can be 
considered as having uniaxial symmetry, and the upper limit is the size of the sample 
monodomain. 

This statement can be made more clear if we remember the definition of the 
theoretical NMR spectrum of the basic molecule: it is the spectrum of this molecule, 
assuming that its symmetry axis is fixed along the field. However, in order to calculate 
this spectrum, we have to consider the real magnetic interactions in the real molecular 
units inside this basic molecule, which are averaged by the real molecular motions. The 
larger the basic molecule, the larger the number of motions which need to be considered 
(in particular if the size is large, some short wavelength modes should be considered as 
internal motions). The more and more averaged the magnetic interactions are, the 
narrower will be the basic NMR spectrum. The difference to the experimental spectrum 
decreases, and this is equivalent to an increase in the uniaxial order parameter S. For a 
basic molecule equal to the monodomain, all motions are internal motions, the basic 
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spectrum is identical to the experimental one, and S =  1. Correlatively, the slower the 
motions associated with the (remaining) modes to produce the observed broadening, 
the larger 7,. For S-1, zc+oo in agreement with equation (58) and, according to 
equations (59) and (60), 4,+O and n,+O (or M 3 0 0 ) .  To summarize, we have the 
following scaling laws (valid in the spherical, one constant approximation): 

q;3cc7~’2cc ( l -~ ) -3 tcnu~ i  (or cc M for a pure system). (61) 
This statement is consistent with the results obtained for our polymer. We have 

indeed seen above that, with the introduction of the biaxiality, which is equivalent to 
including more disorder inside the basic molecule (and thus less disorder in the modes), 
an almost equivalent fit is obtained, as with no biaxiality, but with a larger value of zC. 
According to the above scaling laws, the basic molecule, which, in the uniaxial case, 
corresponds to one repeat unit, corresponds now to -3.3 repeat units. The basic 
molecule is now larger because each unit performs its biaxial fluctuations inside the 
uniaxial frame OXY’Z’ (cf. 42.7). This frame is necessarily attached to an entity larger 
than one repeat unit. Let us now increase the scale by a large factor, and assume that the 
internal motions include a very large number of modes. The basic NMR spectrum is 
now much narrower, almost equal but not quite, to the experimental spectrum. This 
means that the order parameter S associated with the remaining modes is very large. 
Suppose we choose for S the value of S,,,, = 0.962. According to the scaling laws, the 
associated value of T~ is now increased to 0.63 x 
and M increased to - 7.6 x lo5 g. The basic molecule of the theory corresponds to a 
volume of containing -1800 repeat units. Figure 2(C) shows the 
corresponding calculated spectra. It is seen that, although still reasonable in the sense 
that the main features are reproduced, the fit obtained is significantly worse than before 
(see figures 2 (A) and (B)), and also worse than the fit obtained with the analysis in terms 
of ‘static order parameter’ (see figure 2 (D)): the spectra are too well-resolved compared 
to the experimental spectra. The reason for this is clear: the basic NMR spectrum (see 
figure 1 (C)) has been deduced from spectrum 1 (A), assuming that all the internal 
motions are infinitely fast. With a basic molecule as large as that chosen here, the modes 
included as internal motions are not infinitely fast, and consequently the basic NMR 
spectrum is too well-resolved. This illustrates the practical limitation of the choice of a 
small qc in the present method, and correlatively the power of the appropriate method 
of [7] for this particular system. 

It is seen that, in the problem of the broadening of NMR line shapes by the elastic 
modes, although the cut-off wavevector is in principle arbitrary, in practice it is not. In 
practice, we must choose as the basic molecule the smallest possible object which can 
reasonably be considered to have the uniaxial symmetry, in order to avoid the problem 
of slow internal motions. This object is one single molecule (in the case of uniaxiality) 
or, more likely, a small group of molecules (in the case of biaxiality). On the other hand, 
even if there is no problem with slow internal motions, it is not reasonable to choose too 
large a basic molecule. The reason is that it is not natural to split the modes arbitrarily 
into short wavelength modes, which would be considered as internal motions, and long 
wavelength modes, which would be the ‘true’ elastic modes. Unless there is some good 
reason for not doing so, all modes must be considered as ‘true’ modes. This is another 
argument favouring the choice, for the basic molecule, of a small (molecular size) object 
with uniaxial symmetry, It follows from this discussion that, in practice, the choice is 
rather limited. Only careful analysis of relevant experimental results can tell what is the 
‘best’ basic molecule in each particular case. We have seen that for our polymer, the best 

s, qc is reduced to 5.29 x lo6 cm- 
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results are obtained with an object whose size ranges between one to four repeat units. 
Similar situations are suggested by spin-lattice relaxation results in several systems [4- 
61. All these results are consistent with Faber’s view that “all the misalignment of 
molecules in a nematic can be described in terms of director fluctuations, even on a 
microscopic scale” [6(a)], keeping in mind that the microscopic scale is probably, in 
real systems, larger than one molecule; larger in order to account for the probable 
biaxial motions which, by nature, cannot be described by these fluctuations. 

6. Concluding remarks 
To conclude, we wish to make some remarks on two points, namely the limits to the 

applicability of this theory, and the possibility of its use to study viscoelastic properties 
of soft, isotropic materials such as conventional polymers. 

The limits of the theory are associated with the several unavoidable simplifications 
that have been made, mainly (i) the assumption of small amplitude fluctuations, (ii) the 
gaussian statistics and the non-correlation between n, and n,,. and (iii) the gaussian 
character of X,.(t). First, the small amplitudes are essential approximations of the 
hydrodynamic theory which leads to equations (26) through (29). It turns out that the 
most severe numerical approximation in all the calculation lies in the identification of 
the overall mean square amplitude fluctuation (8’) to (sin’ 0): the relative error made 
is of the order of 0’/3. On the other hand, equation (25) suggests that S cannot be 
smaller than 1/7 = 0.14.. . . Other considerations, not developed here, show that this 
limit is in fact 1/4 = 0.25. Suppose we fix the lower limit of S to N 0.429 (the lowest value 
of the Maier-Saupe theory). This value corresponds to an average angle of - 38”, that is 
-0.66rad, yielding 0’/3- 15 per cent. Second, the gaussian character is used to 
establish equations (15) and (23). In fact, since the values of n, and n,, are limited to the 
range [ - 1, + 13, the statistics cannot be exactly gaussian, so that the two equations are 
exact only in the limit S = l .  To have an estimation of the error made, we have 
calculated the ratio R =  (n:)/3(n,2) as a function of S, using a gaussian distribution 
function truncated at &- 1. We find that R decreases from 1 to 0-84 when S decreases 
from 1 to 0.429. If the truncation is made at k0.85, to take into account the (small) 
correlation introduced by the condition ni + n: < 1, the lower limit decreases from 0.84 
to 0.78. It is seen that the error made here is of the order -20 per cent. 

An overall precision of - 15-20 per cent in this problem is quite reasonable in view 
of all the simplifying assumptions that were made, and the accuracy in the 
measurement of the viscoelastic parameters, in particular in polymeric systems. Thus, 
we can reasonably expect that the present description may be useful for systems in 
which the degree of (dynamical) disorder corresponds to S as small as 0.445, that is for 
all liquid crystals. It is worth noting however that this problem ofa small value of S is in 
fact not too serious, since S can be increased by choosing a larger basic molecule, whose 
size, we have seen, is somewhat arbitrary. 

Third, the approximation concerning the gaussian character of XAt), pointed out in 
02.2, is a good one only for t sufficiently larger than the correlation time of e. This 
means that this correlation time should be short. This condition limits, in practice, the 
applicability of the method to samples with average viscosities that are not too high. 
There is however a way to escape this limitation, namely the approximate method in 
terms of ‘static order parameter’ [7], since no such condition is invoked. In the range 
where it applies (S,,,, sufficiently large), this method is (or rather has become since, now 
we know how to choose accurately the NMR time scale At) as accurate as the more 
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detailed method presented in this paper, to extract viscoelastic information from the 
NMR line shapes. 

This discussion shows that the two methods are in fact complementary. This 
method presented here is rather suitable to analyse systems that are not too viscous, 
with possibily rather small order parameters, while the method of [7] is adapted to 
more viscous and more ordered systems. 

As a possible extension of this work, we would like to point out that, although 
developed for (polymer) liquid crystals, the formalism presented may also be useful to 
analyse NMR line shapes of conventional polymers. The reason for this is the 
following. In conventional, rather soft (amorphous, melts, solutions, gels.. .)polymeric 
systems, there is certainly no long range order at a macroscopic scale as in nematic 
systems, but some order at a mesoscopic scale (larger than, say N 100 8) certainly exists, 
as revealed by the slight birefringence that is often observed for many of these systems. 
Our point is to say that, for NMR, these systems must be considered as anisotropic. But 
since the medium is generally macroscopically isotropic, an additional ‘powder 
average’must be performed. Work along these lines is currently being performed in our 
laboratories. 

The authors are indebted to Professor R. B. Blumstein and Doctor J. F. d’Allekt for 
providing the AZA9d14 polymer sample and Doctor P. Fries for illuminating 
discussions. This work was partially supported by the Science Program of the 
Economic European Community, Contract No. ERBSCl *CTOO5068. 

Appendix 
To establish equation (24), we use the property that if n, is a random gaussian 

variable with zero average value, the probability density for a given pair of values 
n,(t‘) = xi and n,(t’ - 7 )  = x2 is given by the bidimensional gaussian distribution [ 161 

where 

The use of the relation 
03 

<x:xz)=Sm d x ,  1 - m  dx,x:x,~(X,,x2) 
- O D  

leads, upon resolution of the double integral, to equation (24) of the text. 
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